

Interoperability between Registries and Health Systems

Dani Prieto-Alhambra

Prof of Pharmaco- and Device Epidemiology, University of Oxford Prof of RWE and Methods, Erasmus MC Rotterdam

In this is my first visit to Australia and Adelaide, I want to acknowledge the Kaurna people as traditional owners of this beautiful land Indonesia Greeseardy Desert Australia Great Victoria Desert

I also want to pay my respects to their elders past and present

- Real world data sources and linkage
- Interoperability: centralised vs federated
- From data standardisation to standardised analytics
- Use case 1: vaccine and public health data for COVID19
- Use case 2: registries and EMR/claims for trial emulation
- Use case 3: UKBB and pharmacogenomics

Real world data sources and linkage

- Interoperability: centralised vs federated
- From data standardisation to standardised analytics
- Use case 1: vaccine and public health data for COVID19
- Use case 2: registries and EMR/claims for trial emulation
- Use case 3: UKBB and pharmacogenomics

Desirable attributes of reliable RWE Why we need linked interoperable data

Desired attribute	Question	Researcher	Data	Analysis		Result
Repeatable	Identical	Identical	Identical	Identical	=	Identical
Reproducible	Identical	Different	Identical	Identical	=	Identical
Replicable	Identical	Same or	Similar	Identical	_	Similar
Replicable	lucifical	different	Similar	lucifical	-	Similar
Generalizable	Identical	Same or different	Different	Identical	=	Similar
Robust	Identical	Same or different	Same or different	Different	=	Similar

P Ryan, Learnings initiative webinar for optimal use of big data for regulatory purposes

RWE Data Sources in Europe

Adding in patient-generated data

Data linkage: the whole journey!!

UNIVERSITY OF OXFORD

DVVC

NUFFIELD DEPARTMENT OF ORTHOPAEDICS, RHEUMATOLOGY AND MUSCULOSKELETAL SCIENCES

- Real world data sources and linkage
- Interoperability: centralised vs federated
- From data standardisation to standardised analytics
- Use case 1: vaccine and public health data for COVID19
- Use case 2: registries and EMR/claims for trial emulation
- Use case 3: UKBB and pharmacogenomics

Data sources

	lt	aly	Netherlands	UK	Denmark	Sp	ain
	HSD	PEDIANET	IPCI	THIN	Aarhus	SIDIAP	SIDIAP PEDIATRICS
Type of datasource	Electronic medical record	Pediatrician records	Electronic medical record	Electronic medical record	Record linkage	Electronic medical record + pharmacy invoice	Electronic medical record + pharmacy invoice
Period covered	From 1998	From 2002	From 1996	From 1990	From 1998	From 2005	From 2006
Population	1.5 million (active)	200.000 (active), pediatric	1.1 million (active)	3.5 million (active) 9 million total	1.8 million (active)	5.1 million (active)	826,940 (active)
Setting	Primary care	Outpatient care	Primary care	Primary care	Dynamic cohorts	Primary care linked to hospital admissions data	Primary care pediatrics linked to hospital admissions data
Type of diagnoses	Outpatient	Outpatient	In-outpatient	In-outpatient	In-outpatient	In-outpatient	Outpatient
Causes of death	Incomplete	Yes	Yes	Yes	Yes	Yes (linked with mortality register)	Yes (linked with mortality register)
Vaccinations	Yes	for now partially	Yes (to be linked)	Yes	Yes (selected)	Yes	Yes
Drugs	Prescriptions	Prescriptions	Prescriptions	Prescriptions	Prescriptions	Prescriptions and Community pharmacy dispensings	Prescriptions and Community pharmacy dispensings
Laboratory values	Yes	Yes	Yes	Yes	Yes	Yes (primary care labs)	Yes (primary care labs)
Frequency of updates	Every 6 months	Continuous	Every 6 months	Every 3 months	Every 12 months	Every 12 months	Every 12 months

- Honest broker
- Stable, structured, multi-national, multidatabase
- Setting:
 - hospital discharge registry (orange)
 - primary care databases (green), some linked to inpatient data
- Data Management:
 - Per protocol minimal common data model
 - Jerboa, Octopus [1]

K Berencsi et al. ICPE 2018

'Per protocol' minimum common dataset *Centralized interoperability*

Remote Research Environment

Database	Person-time	Exposed individuals		
HSD	14 million	~ 14 300		
IPCI	8 million	~ 600		
AUH	14 million	~ 1 300		
THIN	49 million	~ 12 000		
SIDIAP	57 million	~ 49 100		
Total	144 million	~ 77 300		

K Berencsi et al. ICPE 2018

Monthly IR (10,000 PY) of SR use overall and in each

Federated analytics

The journey to real-world evidence: a fully reproducible data flow

- Complete documented specification that fully describes all data manipulations and statistical procedures
- Full analysis code that executes end-to-end (from source to results) without manual intervention

GOAL: to implement a **large sustainable** data **network** (+100m records) in Europe to generate **reliable evidence** for patient care that is **transparent** and fully **reproducible**

A Common Data Model and Standardized Vocabularies

- 2) data analysis
- CDM creates opportunity for <u>re-use of data curation</u> and analysis steps and pipelines

HOW TO START – The EHDEN journey

The OMOP common data model

- Patient-centric
 - Tabular
 - Extendable
- Built for analytics
- Relational design

Federated Analytics

- Real world data sources and linkage
- Interoperability: centralised vs federated
- From data standardisation to standardised analytics
- Use case 1: vaccine and public health data for COVID19
- Use case 2: registries and EMR/claims for trial emulation
- Use case 3: UKBB and pharmacogenomics

Current Approach: "One Study – One Script"

"What's the adherence to my drug in the data assets I own?"

- No patient-level data transfer -> Privacy "by design"
- Reproducibility, Repeatability
- Preserve Desirable Heterogeneity
- Federated analyses -> Collaboration and cross-fertilisation
- Standardised Data <- <- Standardised Analytics

From Data Standardization To Standardised Analytics

Question	Researcher	Data	Analysis		Result	
Identical	Identical	Identical	Identical	=	Identical	CDM and
Identical	Different	Identical	Identical	=	Identical	 standardized analytics
Identical	Same or different	Similar	Identical	=	Similar	
Identical	Same or	Different	Identical	=	Similar	Network studies
- a childe	different	Dimercine	lachtical		China.	
Identical	Same or different	Same or different	Different	=	Similar	Sensitivity
	QuestionIdenticalIdenticalIdenticalIdenticalIdentical	QuestionResearcherIdenticalIdenticalIdenticalDifferentIdenticalSame or differentIdenticalSame or differentIdenticalSame or different	QuestionResearcherDataIdenticalIdenticalIdenticalIdenticalDifferentIdenticalIdenticalSame or differentSimilarIdenticalSame or differentDifferentIdenticalSame or differentSame or different	QuestionResearcherDataAnalysisIdenticalIdenticalIdenticalIdenticalIdenticalDifferentIdenticalIdenticalIdenticalSame or differentSimilarIdenticalIdenticalSame or differentDifferentIdenticalIdenticalSame or differentDifferentIdenticalIdenticalSame or differentDifferentDifferent	QuestionResearcherDataAnalysisIdenticalIdenticalIdenticalIdentical=IdenticalDifferentIdenticalIdentical=IdenticalSame or differentSimilarIdentical=IdenticalSame or differentDifferentIdentical=IdenticalSame or differentSame or different==IdenticalSame or differentSame or different==IdenticalSame or differentSame or different==IdenticalSame or differentSame or different==	QuestionResearcherDataAnalysisResultIdenticalIdenticalIdenticalIdentical=IdenticalIdenticalDifferentIdenticalIdentical=IdenticalIdenticalSame or differentSimilarIdentical=SimilarIdenticalSame or differentDifferentIdentical=SimilarIdenticalSame or differentDifferentIdentical=SimilarIdenticalSame or differentSame or differentDifferent=SimilarIdenticalSame or differentSame or differentDifferent=Similar

P Ryan, Learnings initiative webinar for optimal use of big data for regulatory purposes

DARWIN EU® is a federated **network** of **data**, **expertise** and **services** that supports better decision-making throughout the product lifecycle by generating reliable **evidence from real world healthcare data**

FEDERATED NETWORK PRINCIPLES

- Data stays local
- Use of Common Data Model to perform studies in a timely manner and increase consistency of results

What analyses and studies will DARWIN EU[®] deliver?

	Category of observational analyses and studies	Description
	Off-the-shelf studies	Studies for which a generic protocol is adapted to a research question
Ĵ	Complex Studies	Studies requiring development or customisation of specific study designs, protocols, phenotypes, etc
S	Routine repeated analyses	Routine analyses based on Off-The-Shelf or Complex Studies (see above), repeated periodically with a pre- specified regularity (e.g. yearly)
g	Very Complex Studies	Studies which cannot rely only on electronic health care databases, or which would require complex and/or novel methodological work

What is the DARWIN EU[®] process for conducting studies?

Draft Catalogue of Standard Analyses: Off-the-shelf studies and examples

Standard Analysis	Regulatory example
Population-level disease epidemiology	Prevalence of rare disease/sBackground rates of AESI or DMEs
Patient-level disease epidemiology	Natural history/prognosisCurrent practice/treatment patterns
Population-level DUS	 Incidence and prevalence of use of medicine/s over time
Patient-level DUS	Describing indication/s for drug/sTreatment duration, cumulative use

Data Partners – Phase I

DARWIN EU® Studies – Phase I

Туре	Studies	Data Partners	Planned RWE use	Committee	
OTS	Population level epidemiology study on prevalence of rare blood cancers from 2010.	NL, ES, UK, BE, DE	Support COMP in orphan designation decision making	COMP	
OTS	Patient level drug utilisation study of valproate-containing medicinal products in women of childbearing potential from 2010	NL, ES, UK, BE, DE, FI	Assess the use of valproate after safety referral	PRAC	
OTS	Patient level drug utilisation study of antibiotics on the Watch list of the WHO AWaRe classification, 2010-2021	NL, FR, ES, DE, UK	Inform PRAC/CHMP decision making	PRAC – CHMP AMR strategy	
	Background all-cause mortality rates in patients with severe asthma aged		Support CHMP		
Com	≥12 years old		post-	СНМР	
plex			authorisation informing future decision making		

Classined as confidential by the European Medicines Agency

- Real world data sources and linkage
- Interoperability: centralised vs federated
- From data standardisation to standardised analytics
- Use case 1: vaccine and public health data for COVID19
- Use case 2: registries and EMR/claims for trial emulation
- Use case 3: UKBB and pharmacogenomics

Linking vaccine registries to public health data to monitor COVID vax safety

RESEARCH

OPEN ACCESS

Association between covid-19 vaccination, SARS-CoV-2 infection, and risk of immune mediated neurological events: population Check for updates based cohort and self-controlled case series analysis

> Xintong Li,¹ Berta Raventós,^{2,3} Elena Roel,^{2,3} Andrea Pistillo,² Eugenia Martinez-Hernandez,⁴ Antonella Delmestri,¹ Carlen Reyes,² Victoria Strauss,¹ Daniel Prieto-Alhambra,^{1,5} Edward Burn.^{1,2} Talita Duarte-Salles²

Xintong Li et al. BMJ 2022

POTENTIAL CONTRIBUTING PARTNERS

Table 1 Descriptions of medical records databases used in study										
		Active size of		Key data available						
Database full (short) names	Country	database (by mid-2021; No of people)	Latest data available time	Covid-19 vaccines	Hospital treatments	Hospital outcomes	Outpatient treatments	Platelet counts		
Clinical Practice Research Datalink Aurum (UK CPRD)	UK	13m	May 2021	Complete	No	Incomplete	Yes	Yes		
Information System for Research in Primary Care with minimum basic set of hospital discharge data (CMBD-HA; Spain SIDIAP)	Spain	6m	June 2021	Complete	No	Linked	Yes	Yes		
Integrated Primary Care Information (Netherlands IPCI)	The Netherlands	2m	June 2021	Incomplete	No	Incomplete	Yes	Yes		
IQVIA Longitudinal Patient Data France (France LPD)	France	2.3m	September 2021	Incomplete	No	Incomplete	Yes	Yes		
IQVIA Disease Analyser Germany (Germany DA)	Germany	8.5m	August 2021	Incomplete	No	Incomplete	Yes	Yes		
Medical and Institutional Claims (US Open Claims)	US	187m	September 2021	Incomplete	Incomplete	Incomplete	Yes	Yes		
Charge Data Master (US Hospital CDM)	US	30m	July 2021	Incomplete	Yes	Yes	Incomplete	Incomplete		

Exposures:

Outcomes:

Methods

Results

Bell's palsy		
ChAdOx1 nCoV-19 first dose	•	•
ChAdOx1 nCoV-19 second dose	••	· •
BNT162b2 first dose		* \$ *
BNT162b2 second dose	◆•	* \$ -
mRNA-1273 first dose		
mRNA-1273 second dose		
Ad26.COV2.S first dose		
Covid-19 positive test result		-+-
Encephalomyelitis		
ChAdOx1 nCoV-19 first dose		
BNT162b2 first dose		
Covid-19 positive test result		
Guillain-Barré syndrome		
ChAdOx1 nCoV-19 first dose	_ _	
BNT162b2 first dose		
Covid-19 positive test result		
	0 1 5 10	0 0 1 5 10
	CPRD AURUM	SIDIAP

Standardised incidence ratios of outcomes of interest

Conclusion

No safety signal was observed between covid-19 vaccines and Bell's palsy, encephalomyelitis, and Guillain-Barré syndrome.

An increased risk was observed for people following SARS-CoV-2 infection.

- Real world data sources and linkage
- Interoperability: centralised vs federated
- From data standardisation to standardised analytics
- Use case 1: vaccine and public health data for COVID19
- Use case 2: registries and EMR/claims for trial emulation
- Use case 3: UKBB and pharmacogenomics

- The TOPKAT trial is a multi-centre, pragmatic and expertisebased surgical RCT, evaluating the clinical and cost-effectiveness of PKR with TKR
- We linked data from the UK NJR and HES to replicate the TOPKAT trial using observational data

Data sources

- Propensity Score (PS): logistic regression on 18 patient-level covariates
 - PS matching with up to 1:5 ratio, a caliper of 0.2, and without replacement
 - Inverse probability weighting
 - PS stratification (10 strata)
 - PS adjustment
- Comparability assessed using standardized mean difference

NDORRAS NUFFIELD DEPARTMENT OF ORTHOPAEDICS, RHEUMATOLOGY AND MUSCULOSKELETAL SCIENCES

• Primary outcome (continuous):

- post-operative Oxford Knee Score (OKS; PROM)
- multilevel mixed-effects generalized linear model (level 1: lead surgeon and level 2: patients) with Robust SE

Secondary outcomes (binary):

- 5-years revision recorded in NJR
- multilevel mixed-effects Poisson model (level 1: lead surgeon and level 2: patients) with Robust SE

Criteria for results to be comparable with TOPKAT

- Chi square test p-value < 0.05 (indicating statistical heterogeneity)
- Large tau²
- Large I² >40% (more heterogeneity)
- Effect size overlap
- Statistical significance agreement
- Minimally clinically significant difference of <4

Participant flow diagram: Stages 1

Achieving comparable treatment groups

NUFFIELD DEPARTMENT OF ORTHOPAEDICS, RHEUMATOLOGY AND MUSCULOSKELETAL SCIENCES UNIVERSITY OF

Achieving comparable treatment groups

Primary outcome analysis

KENNEDY

	PS _{Anonlin}		0.10 (-0.44 to 0.63)	74%, 0.05, 1.14	
	PS _{Alin}	-	0.14 (-0.39 to 0.68)	73%, 0.05, 1.14	
	IPW		0.58 (-0.19 to 1.35)	48%, 0.17, 0.43	2
	PSS _{exp}	_	0.76 (0.15 to 1.36)	35%, 0.21, 0.23	1
L	PSS _{whole}		0.56 (-0.03 to 1.16)	53%, 0.14, 0.48	3
	PSM		0.27 (-0.38 to 0.92)	68%, 0.08, 0.91	
	ΤΟΡΚΑΤ		1.91 (0.20 to 3.62)		
	Method	Mean OKS difference	Effect size (95% CI)	$I^{2}, \chi^{2}, \tau^{2}$	

Primary outcome analysis: restricted by surgeon experience

Method	Mean OKS difference		Effect size (95% CI)	l ² , χ ² , τ ²	
ΤΟΡΚΑΤ			1.91 (0.20 to 3.62)		
PSS _{whole}			0.56 (-0.03 to 1.16)	53%, 0.14, 0.48	
PSS _{whole}	Sensitivity cohort		1.37 (0.54 to 2.20)	0%, 0.58, 0.00	
PSS _{exp}			0.76 (0.15 to 1.36)	35%, 0.21, 0.23	
PSS _{exp}	Sensitivity cohort		1.37 (0.54 to 2.20)	0%, 0.58, 0.00	
IPW		• · · · ·	0.58 (-0.19 to 1.35)	48%, 0.17, 0.43	
IPW	Sensitivity cohort		1.32 (0.32 to 2.33)	0%, 0.56, 0.00	
	-1 Favours TKR	0 1 2 3 Favours	4 PKR		=NNI

Secondary outcome analysis: Five year revision surgery

KENNEDY

Sensitivity analysis: impact of surgeon experience

KENNEDY

Stage 2: Studying patients ineligible for the TOPKAT trial (ASA ≥3)

Safety data

	Revision surgery	Mortality	Venous thromboembolism	MI	Prosthetic joint infection
PSS whole	2.70 (2.15, 3.38)	0.64 (0.55, 0.75)	0.33 (0.15, 0.74)	0.73 (0.36, 1.45)	0.85 (0.33, 2.19)
PSS exp	2.70 (2.15, 3.38)	0.64 (0.55, 0.75)	0.33 (0.15, 0.74)	0.73 (0.36, 1.45)	0.85 (0.33, 2.19)
IPW	2.60 (1.94, 3.47)	0.83 (0.67, 1.03)	0.39 (0.16, 0.96)	0.73 (0.36, 1.45)	0.55 (0.18, 1.71)

Conclusions

- We demonstrate the usefulness of linking registry data to other routinely collected datasets, including EMR, HRQoL, mortality, and hospital claims
- By doing this, we could account for more and more granular information on confounders, both at the patient and surgeon/hospital level
- All PS methods replicated the TOPKAT trial findings after restricting to eligible (experienced) surgeons

- Observational studies and RCTs are mutually complementary in evaluating effectiveness and safety
- Here, our study was able to quantify effectiveness and safety of PKR in patients who were ineligible for the TOPKAT trial:
 - PKR was more effective and safer than TKR for patients with severe comorbidity and should be considered the first option for suitable patients

- Real world data sources and linkage
- Interoperability: centralised vs federated
- From data standardisation to standardised analytics
- Use case 1: vaccine and public health data for COVID19
- Use case 2: registries and EMR/claims for trial emulation
- Use case 3: HRQoL for HTA
- Use case 4: UKBB and pharmacogenomics

UK Biobank: The ultimate linkage (i) Baseline visit and survey

Touchscreen questionnaire and computer-assisted verbal interview	
Sociodemographic	Ethnicity, education, employment, household information, Townsend deprivation index (socioeconomic status)
Lifestyle	Smoking; alcohol consumption; physical activity; diet; sleep
Environmental factors	Current address; current (or last) occupation; domestic heating and cooking fuel; housing; means of travel; shift work; mobile phone use; sun exposure
Early life factors	Birthplace, birth weight, breastfed, childhood body size and height, maternal smoking, handedness, adopted, and part of multiple birth
Family history	Illnesses of father/mother/siblings, age of parents, age parents died, and number of siblings
Psychosocial factors	Social support, bipolar/major depression, anxiety, nerves, psychological traits, and mood
Health and medical history	Medical conditions, medications, operations, cancer screening, pain, oral health, eyesight, hearing, and general health
Sex-specific factors	Male specific—first facial hair, age voice broke, hair/ balding pattern, children fathered; female specific— hormone replacement therapy, contraception, pregnancy, menstruation, menopause, and cervical test
Cognitive function	Pairs matching; reaction time; prospective memory ^a ; fluid intelligence ^a ; numeric memory ^b
Hearing tests	Speech reception threshold ^a

UK Biobank: The ultimate linkage (ii) Measurements / anthropometrics

UK Biobank: The ultimate linkage (iii) Imaging

MR images of the brair

MR images of the heart

MR images of the body

Full body DXA scans

Carotid ultrasound images

UK Biobank: The ultimate linkage (iv) Biomarkers and Genetics

UK Biobank: The ultimate linkage (v) Prospective linked data collection

Linkage to routinely health databases

- ✓ Primary care
- Secondary care / Hospital admissions
- ✓ Cancer register
- ✓ Death register
- ✓ COVID-19 tests and results (PHE-UKHSA)

Caleyachetty, R. et al. J Am Coll Cardiol. 2021;78(1):56-65.

Pharmacogenomics: From promise to reality

Genetic risk and incident venous thromboembolism in middle-aged and older adults following COVID-19 vaccination

Junqing Xie, Albert Prats-Uribe, Maria Gordillo-Marañón, Victoria Y. Strauss, Dipender Gill, Daniel Prieto-Alhambra

Genetic risk score (PRS) for VTE in UKBB

2019 cases (whole UK Biobank)

446614 UKBB people survived in 2019-01-01 **727** cases occurred in the year 2019

Post vaccination cases

354897 UKBB people vaccinated with 1-dose end march **80** cases occurred on the first up to 28 d after vaccination

Hazard ratios for incident VTE events following Covid-19 and influenza vaccine

110	azaru ratios for mendent v rE event	s tonowing c	Jovid-19	anu mnuenza va
Го	llow-up periods	N	Cases	HRs (continuous)
En	tire vaccinated cohort			Per SD increase
28	days (Covid-19 vaccine)	354879	80	1.37 (1.11 – 1.70)*
28	days (Flu vaccine)	281623	39	1.36 (1.01 – 1.85)*
90	days (Covid-19 vaccine)	354879	168	1.41 (1.21 – 1.63)*
- 90	days (Flu vaccine)	281623	131	1.57 (1.33 – 1.85)*
	Strata 🗮 lower 50% percentile 💻 upper 50% percentile		Strata — Iow	er 50% percentile — upper 50% percentile
Cumulative event 2e-04 00+00	Covid-19 vaccine	- 40-98 - 04 - 6e-04 - 4e-04 - 04 - 02 - 00 - 00+00 -		Flu vaccine
	0 25 50 75 100 Time	(0 25	50 75 100 Time
	Schoenfeld Individual Test p: 0.7845	S	choenfeld Indi	vidual Test p: 0.5809
t) for zscore_cat		(t) for zscore_cat		

EMIS + TPP -

27 36 43 Time

51 61 80

-20 -

7.4 17

Vaccination reduces post-COVID thromboembolic complications

Research

JAMA Internal Medicine | Original Investigation

Clinical and Genetic Risk Factors for Acute Incident Venous Thromboembolism in Ambulatory Patients With COVID-19

JunQing Xie, BSMed, MSc; Albert Prats-Uribe, DPhil; QI Feng, PhD; YunHe Wang, MSc; Dipender Gill, MD, PhD; Roger Paredes, MD, PhD; Dani Prieto-Alhambra, MD, PhD

COVID-19 increases (dramatically) the risk of venous blood clots (VTE)

- 1. Strong association with treatment (ie Rx A vs Rx B)
- 2. No association with outcome (other than through treatment)
- 3. No association with potential confounders

- 1. Strong association with treatment (ie Fast metaboliser-> more drug)
- 2. No association with outcome (other than through treatment)
- 3. No association with confounders (Mendelian laws)

JAMA | Original Investigation

Association of Tramadol vs Codeine Prescription Dispensation With Mortality and Other Adverse Clinical Outcomes

Junqing Xie, BSMed, MSc; Victoria Y. Strauss, PhD; Daniel Martinez-Laguna, MD, PhD; Cristina Carbonell-Abella, MD, PhD; Adolfo Diez-Perez, MD, PhD; Xavier Nogues, MD, PhD; Gary S. Collins, PhD; Sara Khalid, PhD; Antonella Delmestri, PhD; Aleksandra Turkiewicz, PhD, CStat; Martin Englund, MD, PhD; Mina Tadrous, PharmD, PhD; Carlen Reyes, MD, PhD; Daniel Prieto-Alhambra, MD, PhD

Limitations

This study has several limitations. First, although tramadol and codeine have been widely indicated for managing moderate to severe pain, confounding by indication could have affected the study findings. For example, codeine is often prescribed to control coughs, and a higher prevalence of cough has been observed among patients with codeine prescription dispensation (9.1%) than among patients with tramadol prescription dispensation (6.0%) before matching. However, the Figure 3. Event Counts, Incidence Rates, Absolute Rate Differences, and Adjusted Hazard Ratios for 8 Study Outcomes Within 1 Year in the Matched Cohort

	Tramado	l (n=184480)	Codeine	(n = 184 480)						
Outcome	No. of Events	Incidence rate per 1000 person-years	No. of Events	Incidence rate per 1000 person-years	Rate difference (95% CI) per 1000 person-years	Hazard ratio (95% CI)	Favors tramadol	Favors codeine		
All-cause mortality	2307	13.00	999	5.61	7.37 (6.09 to 8.78)	2.31 (2.08 to 2.56)			-	
Cardiovascular events	1772	10.03	1536	8.67	1.36 (0.45 to 2.36)	1.15 (1.05 to 1.27)		-8-		
Constipation	1234	6.98	1137	6.41	0.56 (-0.17 to 1.39)	1.08 (0.97 to 1.21)				
Delirium	38	0.21	37	0.20	0.00 (-0.09 to 0.18)	1.02 (0.54 to 1.93)			_	
Fractures	2160	12.26	1442	8.13	4.10 (3.02 to 5.29)	1.50 (1.37 to 1.65)				
Falls	488	2.75	413	2.32	0.43 (-0.02 to 0.98)	1.18 (0.98 to 1.42)				
Opioid abuse/dependence	23	0.12	12	0.06	0.05 (-0.01 to 0.24)	1.91 (0.72 to 5.08)				→
Sleep disorders	394	2.22	371	2.08	0.13 (-0.26 to 0.62)	1.06 (0.87 to 1.29)	_			
						0.	5 H	i 1 azard ratio ((95% CI)	

Watch this space: Mendelian Randomisation

Advance causal drug effects research

E.g.: CVDs, fracture, death

mann

QUESTIONS?

Daniel.prietoalhambra@ndorms.ox.ac.uk

@prieto_alhambra

11111 111

CONTRACTOR OF THE OWNER.

71